STUDENT LEARNING OUTCOMES (SLOs)

Biomedical Physics Minor – School of Sciences and Mathematics

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Assessment Method</th>
</tr>
</thead>
</table>
| SLO1: Students will demonstrate basic conceptual understanding of biophysical processes. | **Measure 1.1:** At least 70% of students will score 70% or higher on conceptual questions related to biophysical processes as measured in the tests administered in the two core courses: PHYS 203 (Physics and Medicine) and BIOL 396/PHYS 396 (Biophysical Modeling of Excitable Cells). Depending on the course offering, conceptual understanding could also be assessed in related electives, such as PHYS 270 (Nanotechnology in Medicine). Examples of conceptual questions from BIOL 396/PHYS 396 tests are attached.
Performance Target: set based on results from 2016-2017 assessment. |
| | **Measure 1.2:** At least 75% of students will score 75% or higher on conceptual questions related to biological processes as measured in the quizzes administered in the two core courses: PHYS 203 (Physics and Medicine) and BIOL 396/PHYS 396 (Biophysical Modeling of Excitable Cells). Depending on the course offering, conceptual understanding could also be assessed in related electives, such as PHYS 270 (Nanotechnology in Medicine). Examples of conceptual questions from quizzes administered in BIOL 396/PHYS 396 are attached.
Performance Target: set based on results from 2016-2017 assessment. |
| SLO2: Students will apply their numerical skills to solve problems involving biophysical processes. | **Measure 2.1:** At least 70% of students will score 70% or higher on problem solving related to biophysical processes as measured by the homework assignments administered in the two core courses: PHYS 203 (Physics and Medicine) and BIOL 396/PHYS 396 (Biophysical Modeling of Excitable Cells). Depending on the course offering, problem solving skills could also be assessed in relevant electives, such as PHYS 270 (Nanotechnology in Medicine). Examples of homework assignments from BIOL 396/PHYS 396 are attached.
Performance Target: set based on assessment results from 2016-2017. |
| | **Measure 2.2:** At least 75% of students will score 75% or higher on problem solving related to biophysical processes as measured by the tests administered in the two core courses: PHYS 203 (Physics and Medicine) and BIOL 396/PHYS 396 (Biophysical Modeling of Excitable Cells). Depending on the course offering, problem solving skills could also be assessed in relevant electives, such as PHYS 270 (Nanotechnology in Medicine). Examples of tests from BIOL 396/PHYS 396 are attached.
Performance Target: set based on assessment results from 2016-2017. |
| SLO3: Students will apply their computational skills to model biophysical processes. | **Measure 3.1:** At least 75% of students will score 75% or higher on computational problems related to biological processes as measured by the homework assignments administered in the only core course of the minor that covers computational modeling of biophysical processes - BIOL 396/PHYS 396 (Biophysical Modeling of Excitable Cells). Examples of computational problems from homework assignments administered in BIOL 396/PHYS 396 are attached.
Performance Target: set based on assessment results from 2016-2017 assessment. |
| | **Measure 3.2:** At least 70% of students will score 70% or higher on computational problems related to biological processes as measured by the tests administered in the only core course of the minor that covers computational modeling of biophysical processes - BIOL 396/PHYS 396 (Biophysical Modeling of Excitable Cells).
Performance Target: set based on assessment results from 2016-2017 assessment. |